This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

SYNTHESIS OF SULFAMOYL AZIDE AND REACTION WITH TRISUBSTITUTED PHOSPHINES

Craig A. Obafemia

^a Department of Chemistry, Obafemi Awolowo University, Nigeria

To cite this Article Obafemi, Craig A.(1995) 'SYNTHESIS OF SULFAMOYL AZIDE AND REACTION WITH TRISUBSTITUTED PHOSPHINES', Phosphorus, Sulfur, and Silicon and the Related Elements, 104:1,1-4

To link to this Article: DOI: 10.1080/10426509508042571 URL: http://dx.doi.org/10.1080/10426509508042571

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF SULFAMOYL AZIDE AND REACTION WITH TRISUBSTITUTED PHOSPHINES

CRAIG A. OBAFEMI

Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Osun-State, Nigeria

(Received August 4, 1993; in final form October 16, 1994)

A new synthetic route to (trisubstitutedphosphoranylidene)sulfamides via the reaction of sulfamoyl azide with trisubstituted phosphines is described.

Key words: Sulfamoyl azide, trisubstituted phosphine, (trisubstitutedphosphoranylidene)sulfamides.

We reported earlier the first synthesis of organophosphorus ester chlorides of the type (RO)₃P=NSO₂Cl, the chlorosulfonylimino(trialkoxy or triphenoxy)phosphoranes,¹ ((trialkoxy or triphenoxyphosphoranylidene)sulfamoyl chlorides) from the reaction of chlorosulfonyl azide and suitably substituted phosphines.

Other (trisubstitutedphosphoranylidene)sulfamoyl chlorides have been prepared by the reaction of sulfuryl chloride with triphenylphosphine imine² and the Kirsanov reaction,^{3,4} involving the reaction of sulfamic acid with suitably halogenated phosphorane. In the work of Kirsanov and co-workers,² (trisubstitutedphosphoranylidene)sulfamides 2 were prepared by the reaction of (trisubstitutedphosphoranylidene)sulfamoyl chlorides 1 with ammonia and amines (see Equation 1).

In our continued work on the synthesis of (trisubstitutedphosphoranylidene)-sulfamoyl derivatives for chemical and biological studies, we report here the use of sulfamoyl azide for the synthesis of (trisubstitutedphosphoranylidene)sulfamides.

Treatment of sulfuryl chloride with excess sodium azide in acetonitrile gave sulfuryl azide as reported earlier.⁵ Direct reduction of this acetonitrile solution of sulfuryl azide with sodium borohydride (1/2 mole equivalent) afforded an oil and a mixture of sulfamic acid and sulfur. The infrared spectrum of the oil suggested the formation of sulfamoyl azide 3 with N₃, SO₂ and NH₂ functional groups showing their characteristic stretching frequencies in the expected regions (Table I). Its formation is further confirmed by mass spectrum. Its mass spectrum exhibits the molecular ion at m/e 122 and this fragments further in a manner similar to organosulfonyl azides⁶ by first losing N₃ radical to give the parent peak at m/e 80:

$$N_3SO_2NH_2^+ \xrightarrow{-N_3} SO_2NH_2^+$$
m/e 122; 9.6% m/e 80; 100% (12.0%)⁷ (100%)⁷

Sulfamoyl azide had earlier been prepared by Shozda and Vernon,⁷ from the reaction of sodium azide with sulfamoyl chloride:

$$H_2NSO_2Cl + NaN_3 \rightarrow H_2NSO_2N_3$$
 (2)

It was obtained as a low melting explosive solid. The fragmentation pattern of the compound, obtained in this work, is identical to the reported mass spectrum.⁷

Sulfamic acid was confirmed by its melting point, infrared and mass spectrum. The mass spectrum exhibits the (M-1) ion at m/e 96 (63.6% relative intensity) and base peak at m/e 80 (attributable to either $H_2NSO_2^+$ or SO_3^+).

The formation of sulfur was confirmed by its melting point (118°C) and mass spectrum. The fragmentation pattern is identical to the published mass spectrum of S_8^8 , with molecular ion at m/e 256 (relative intensity 57.1%).

The by-products, sulfur and sulfamic acid, were not formed when the acetonitrile solution containing the sulfuryl azide was diluted with toluene. This was then washed with dilute alkali, followed by dilute HCl and then water. The organic portion was separated, dried over anhydrous Na₂SO₄ and then reduced with NaBH₄.

Equimolar amounts of sulfamoyl azide 3 and the appropriate trisubstituted phosphine were reacted in a suitable solvent under gentle reflux to give the corresponding (trisubstitutedphosphoranylidene)sulfamide 4-7 (Scheme I).

TABLE I
Infrared data of the sulfonyl azides and the (phosphoranylidene)sulfamides

Compd.	IR Absorption $v(cm^{-1})$	M ⁺ (rel.int.)
N ₃ SO ₂ N ₃	2145(N ₃); 1378, 1177(SO ₂); (other 1636w)	-
3	3395,3303(NH_2); 2149(N_3); 1381, 1181 (SO_2); (other, 1551 m)	122(9.6)
4	3372, 3287 (NH ₂); 1254, 1173, 1134 (SO ₂ ,P=NSO ₂) ¹ ; (other, 1586, 1563, 1439)	356(23.3)
*5(oil)	3338, 3268,3122(NH ₂); 1261, 1176,1130 (SO ₂ ,P=NSO ₂) ¹ ; (other,1590, 1439,1400)	-
6	3350, 3280(NH ₂); 1345, 1293, 1242, 1204,1185,1161(SO ₂ ,P=NSO ₂) ¹ ; (other, 3030, 1590, 1485)	(M-NH ₂) ⁺ at m/e 388(5.2)
7	3371, 3232(NH ₂); 1285, 1250, 1180 1158 (SO ₂ , P=NSO ₂) ¹	(M-15) + at m/e 245 (20.0)

*Note: Compound 5 could not be obtained in analytically pure form.

$$SO_2Cl_2 \longrightarrow N_3SO_2N_3 \xrightarrow{1/2} \xrightarrow{N_4BH_4} \longrightarrow H_2NSO_2N_3 + (H_2NSO_3H + S_8)$$

SCHEME I

EXPERIMENTAL

1. Preparation of Sulfamoyl Azide

To sulfuryl azide (prepared from freshly distilled sulfuryl chloride (25 ml, 308 mmol) and sodium azide (70.0 g, 1075 mmol))⁵ in dry acetonitrile (1000 ml) was added sodium borohydride (5.8 g, 154 mmol) in small portions with stirring, after which the mixture was refluxed for 1 h. The reaction mixture was cooled in ice and then treated with dilute H_2SO_4 (0.05 M), followed by extraction with ether. The ether extract was washed with water and dried over anhydrous sodium sulfate. Evaporation of the solvent at room temperature gave a mixture of sulfamoyl azide as an oil⁹ and solid (sulfamic acid and sulfur). Addition of toluene or benzene separated the oil from the solid. Weight of oil = 18.4 g (49% yield based on the starting sulfuryl chloride), sulfamic acid (10.5 g, 35%) and sulfur (0.9 g). The oil was used directly for the synthesis of 4-7.

2. Reaction of Sulfamoyl Azide with Trisubstituted Phosphines

General procedure. The reaction of triphenylphosphine with sulfamoyl azide is representative of the procedure employed.

To 1.0 g (8.2 mmol) of sulfamoyl azide in toluene was added triphenylphosphine (2.2 g, 8.4 mmol), stirred to dissolution and then heated gradually to reflux. Refluxing was continued for 6 h. The solvent was evaporated and the residue recrystallised from ethanol to give white crystals (2.5 g, 85% yield). M.P. = 196-198°C (lit.², 197-198°C). H NMR (DMSO-d₆): 7.75-7.48 (m, Ar); 5.97 (s, NH₂, D₂O exchangeable).

(Triphenoxyphosphoranylidene)sulfamide 6, was obtained as a soft white solid melting at 72–75°C. Recrystallization from toluene gave white crystals (78% yield). M.P. = 149–151°C. ¹H NMR (DMSOd_b): 7.43–7.37 (m, 6H, Ar), 7.28–7.19 (m, 9H, Ar), 6.95 (br, s, NH₂, D₂O exchangeable). $C_{18}H_{17}N_2O_5PS$ required: C = 53.46; H = 4.24; N = 6.93. Found: C = 53.49; H = 4.10; N = 6.71. (Triethoxyphosphoranylidene)sulfamide 7, was obtained as an oil. ¹H NMR (CDCl₃): 4.15 (q, 6H); 1.38 (t, 9H). $C_6H_{17}N_2O_5PS$ required: C = 27.69; H = 6.58; N = 10.76. Found: C = 27.50; H = 6.59; N = 10.64.

3. Spectroscopy

The IR spectra were recorded on a PERKIN ELMER IR spectrometer, type 299. A BRUCKER WM-250 NMR spectrophotometer was used to record the NMR spectra in CDCl₃ or DMSO-d₆ (TMS as internal standard). A VARIAN MAT 312 mass spectrometer was used to record the mass spectra at 70 ev.

ACKNOWLEDGEMENTS

C. A. O. is grateful to the ALEXANDER VON HUMBOLDT-FOUNDATION of Germany for the award of AVH fellowship, during which this work was carried out in the laboratory of Professor Wolfgang Pfleiderer, Fakultat Fur Chemie, Universitat Konstanz, Konstanz, Germany.

REFERENCES

- 1. C. A. Obafemi, Synth. React. Inorg. Met. Org. Chem., 12, 41 (1982).
- 2. A. S. Shtepanek, V. A. Zasorina and A. V. Kirsanov, J. Gen. Chem. USSR (Engl. Trans), 43, 21 (1973).
- 3. A. V. Kirsanov, J. Gen. Chem. USSR (Engl. Trans.), 22, 101 (1952).
- 4. D. E. Arrington, Synth. React. Inorg. Met-Org. Chem., 4, 107 (1974).
- 5. C. A. Obafemi, Phosphorus and Sulfur, 12, 189 (1982).
- 6. M. M. Campbell and A. D. Dunn, Org. Mass Spectrom., 6, 599 (1972).
- 7. R. J. Shozda and J. A. Vernon, J. Org. Chem., 32, 2876 (1967).
- M. Hesse, H. Meier and B. Zeeh, "Spektroskopsche Methoden in der Organischen Chemie," Georg Thieme Verlag Stuttgart, New York, 1984, p. 394.
- 9. Care must be taken in handling sulfamoyl azide as it is an explosive material (see Reference 7).